Classification of Research Papers on Radio Frequency Electromagnetic Field (RF-EMF) Using Graph Neural Networks (GNN)

نویسندگان

چکیده

This study compares the performance of graph convolutional neural network (GCN) models with conventional natural language processing (NLP) for classifying scientific literature related to radio frequency electromagnetic field (RF-EMF). Specifically, examines two GCN models: BertGCN and citation-based GCN. The concludes that model achieves consistently good when input text is long enough, based on attention mechanism BERT. When sequence short, composition parameter λ, which combines output values subnetworks BertGCN, plays a crucial role in achieving high classification accuracy. As value λ increases, accuracy also increases. proposes tests simplified variant revealing differences among under different data conditions by existence keywords. has main contributions: (1) implementation testing document tasks fields publications, (2) confirmation impact conditions, such as keywords length, original BertGCN. Although this focused specific domain, our approaches have broader implications extend beyond publications general classification.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limits.

BACKGROUND Concerns of the general public about potential adverse health effects caused by radio-frequency electromagnetic fields (RF-EMFs) led authorities to introduce precautionary exposure limits, which vary considerably between regions. It may be speculated that precautionary limits affect the base station network in a manner that mean population exposure unintentionally increases. AIMS T...

متن کامل

P-105: Prenatal Effects Exposure to Extremely Low Frequency- Electromagnetic Field (ELF-EMF) on Pathology of Testis in Newborn Rats

Background: Human beings are unavoidably exposed to ambient electromagnetic fields (EMF) generated from various electrical devices and from power transmission lines. The effects of extremely low-frequency electromagnetic fields (ELF-EMF) on the biological functions of living organisms represent an emerging area of interest for human health. One of the critical issues is that EMF may adversely a...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

Electromagnetic Field Simulation Using 3-d Cellular Neural Networks

Electromagnetic field is simulated in time domain by mapping Maxwell's equations onto threedimensional cellular neural networks. Components of the field vectors are associated with interleaved grids, and different templates are used for each component and for each medium present in the mesh. At the network boundary, suitable templates are used to simulate perfectly absorbing planes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13074614